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USDA-ARS Biochar and Pyrolysis Initiative

GRACEnet Project (30 locations): Greenhouse Gas Reduction and Carbon Enhancement Network

REAP Project (24 locations): Renewable Energy Assessment Project

Biochar and Pyrolysis Initiative (15 locations)

Ongoing field plot trial (6 locations)

Multi-location USDA-ARS research efforts:



Biochar: New purpose not a new material

Pyrolysis, carbonization, and coalification are well establish 

conversion processes with long research histories

Except:

Prior emphasis: 

Conversion of biomass to liquids (bio-oils) or 

gaseous fuels and/or fuel intermediates 

Solid byproduct (biochar) has long been 

considered a “undesirable side product” 
(Titirici et al., 2007)

Used as fuel  

(3000-4000 BC)

Cave Drawings

(>10,000 to 30,000 BC)

Water filtration

(2000 BC)

Charcoal production

(15th century)



Pyrolysis, carbonization, and coalification are well establish 

conversion processes with long research histories

Except:

Prior emphasis: 

Conversion of biomass to liquids (bio-oils) or 

gaseous fuels and/or fuel intermediates 

Solid byproduct (biochar) has long been 

considered an “undesirable side product” 
(Titirici et al., 2007)

What is new

The use (or purpose) for the creation of 
charred biomass

Atmospheric C sequestration

Dates to 1980’s and early 2000’s
(Goldberg 1985; Kuhlbusch and Crutzen, 1995; Lehmann, 2006)

Used as fuel  

(3000-4000 BC)

Cave Drawings

(>10,000 to 30,000 BC)

Water filtration

(2000 BC)

Climate Change Mitigation

(1980’s)

Charcoal production

(15th century)

Biochar: New purpose not a new material



Carbon Sequestration Rates
Ecosystem Range of Natural CO2

Sequestration Rates

(tons C acre-1 yr-1)

Cropland 0.2  to  1

Forest 0.1  to 4

Grassland / Prairie 0.1  to  1

Swamp / Floodplain / Wetland 2  to  4

Biochar  Goal is to increase rates of C sequestration



Biochar: Black Carbon Continuum

Thermo-chemical conversion products

Graphite
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Problem  Lack of nomenclature uniformity (Jones et al., 1997)

Adapted from Hedges et al., 2000; Elmquist et al., 2006



Biochar: Black Carbon Continuum

Thermo-chemical conversion products

Graphite
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Oxygen to carbon (O:C) molar ratio
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Charcoal
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Combustion residuesCombustion condensates Combustion residues

Biomass

Complete new structure Retains relic forms of parent material

0.2 0.6

Biochar – Spans across multiple divisions in the Black C Continuum

However, biochar is NOT a new division…

Adapted from Hedges et al., 2000; Elmquist et al., 2006

Biochar



Comparisons of Natural vs. Synthetic

Synthetic (Pyrolysis) Biochar

-Pure homogeneous feedstock

-“Constant” temperature
- Industrial Process

-Typically cooled under anaerobic 

conditions (no water)
- No weather exposure

Natural Biochar

-Heterogeneous feedstock
- Impurities

- Soil and oxygen

- Minerals (metals) alter yields
(e.g. Robertson, 1969; Bonijolya et al., 1982; Baker, 1989)

- Multiple feedstock sources

- Species and types

-Variable temperature
- 80 to 1000 oC

-Air cooled/Precipitation/Solar (UV)
- Exposed to environmental conditions



Biochar: Soil Stability

Over a 100 year history of research

Potter (1908) – Initial observation of 
fungi/microbial degradation of lignite (low grade coal/charcoal)

Biochar Degradation Study Residence Time (yr)

Steinbeiss et al. (2009) <30  

Hamer et al. (2004) 40 to 100

Bird et al. (1999) 50-100

Lehmann et al. (2006) 100’s

Baldock and Smernik (2002) 100-500

Hammes et al. (2008) 200-600 

Cheng et al. (2008) 1000

Harden et al. (2000) 1000-2000 

Middelburg et al. (1999) 10,000 to 20,000

Swift (2001) 1,000-10,000

Zimmerman (2010) 100’s to >10,000

Forbes et al. (2006) Millennia based on C-dating

Liang et al. (2008) 100’s to millennia



Possible Stability Explanation O:C Ratio

Summary of existing literature studies (n=35) on half-life estimation of biochar  [Figure from Spokas (2010)]
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Proposed Biochar Mechanisms

1. Alteration of soil physical-chemical properties

 pH, CEC, decreased bulk density, increased water 
holding capacity

2. Biochar provides improved microbial habitat

3. Sorption/desorption of soil GHG and nutrients

4. Indirect effects on mycorrhizae fungi through 
effects on other soil microbes

 Mycorrhization helper bacteria  produce 
furan/flavoids beneficial to germination of fungal 
spores

Warnock et al. (2007)



Soil Microbe Impacts: Laboratory Incubations

• We know when we are sick….

Fever, aches, pains..…

• How about for soil microbes:

• Look at their “products” – e.g. CO2, CH4, N2O

• Implications on the rates of reaction and 

amount of gases produced

•Provide clues into the mechanisms



Biochar impacts on Soil Microbes & N Cycling

 44 different biochars evaluated

 11 different biomass parent materials

 Hardwood, softwood, corn stover, corn cob, 

macadamia nut, peanut shell, sawdust, algae, 

coconut shell, turkey manure, distillers grain 

 Represents a cross-sectional sampling of 
available “biochars”

 C content 1  to 84   %

 N content 0.1 to 2.7  %

 Production Temperatures 350 to 850 oC

 Variety of pyrolysis processes

 Fast, slow, hydrothermal, gasification



Laboratory Biochar Incubations

Soil incubations:

Serum bottle (soil + biochar)

5 g soil mixed with 0.5 g biochar 

(10% w/w) [GHG production]

Field capacity and saturated 

Mason Jar (biochar mixed & 
isolated)

Looking at impact of biochar 

without mixing with soil
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Biochar isolated or mixed with soil
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Ethylene Impacts

Soil Microbial Impacts

Induces fungal spore germination

Inhibits/reduces rates of nitrification/denitrification

Inhibits CH4 oxidation (methanotrophs)

Involved in the flooded soil feedback 

Both microbial and plant (adventitious root growth)
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Closer 
look at N-

cycling
(hardwood sawdust biochar)
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Brief Overview of N-cycle
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+)
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-)

Nitrogen Uptake (plants/microbes)

Nitric Oxide (NO)

Nitrogen Gas (N2)

Nitrous Oxide (N2O)

Nitrification

N2

Mineralization

Organic N

Nitrogen fixation

E
m

it
te

d
 t
o
 a

tm
o
s
p
h
e
re

Nitrate (NO3
-)

Denitrification



Putting the pieces together: Not quite a full picture yet…
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Ethylene Production

•Ethylene could provide a mechanism behind reduced 

nitrification/denitrification activity

•Clough et al. (2010) also hypothesized that -pinene

could be involved as a nitrification inhibitor

-pinene observed as volatile from vegetation 

 involved in insects’ chemical communication 

system

•Despite the different chemicals – Same mechanism: 

Chemical inhibitors behind the suppression of 

N2O production
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Impact of Biochar Volatiles in Soils

• Volatile organic compounds can interfere with microbial processes

• Terpenoids – interfere with nitrification [Amaral et al., 1998; White 1994]

• Furfural + derivatives – inhibits microbial fermentation & nitrification (Couallier et al., 

2006; Datta et al. 2001)

• Benzene, Esters – Also inhibit microbial reactions

• Still ongoing and developing research area in the plant/microbe research area

• Alterations in VOC content could be sensitive indicators of soil 
conditions (Leff and Fierer, 2008).

• Sorbed BC volatiles could interfere with microbial signaling 
(communication): Releasing or sorb signaling compounds



Conclusions

• Another piece to the puzzle: Ethylene + sorbed VOC’s

– Sorbed volatiles and degradation products (ethylene) should be included in 
the potential biochar mechanisms

– Microbial inhibitors – Could also explain plant effects

 Reduction in N2O production : Consequence of sorbed volatiles impacting the 

nitrification process 
 Accumulation of NH+

4 and decreased NO-
3 production

 Length of impact ? 

 No absolute “Biochar” consistent trends: Highly variable and different responses 

to biochar as a function of soil ecosystem (microbial linkage) & position on black 

carbon continuum:
Typically:

 Reduced basal CO2 respiration

 Reduced CH4 oxidation activity

 Reduced N2O production activity

 Reduced NO3 production (availability) 

 Increased extractable NH4 concentrations

 Exceptions DO exist
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“The Nation that destroys its soil destroys itself”

Franklin D. Roosevelt


